skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karasev, Roman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inspired by the classical Riemannian systolic inequality of Gromov, we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, where the inequality holds under a topological assumption of “essentiality”, our proofs rely on a combinatorial analogue of that assumption. Under a stronger assumption, expressed in terms of cohomology cup-length, we improve our results quantitatively. We also illustrate our methods in the continuous setting, generalizing and improving quantitatively the Minkowski principle of Balacheff and Karam; a corollary of this result is the extension of the Guth–Nakamura cup-length systolic bound from manifolds to complexes. 
    more » « less
  2. Abstract We note that the recent polynomial proofs of the spherical and complex plank covering problems by Zhao and Ortega-Moreno give some general information on zeros of real and complex polynomials restricted to the unit sphere. As a corollary of these results, we establish several generalizations of the celebrated Bang plank covering theorem. We prove a tight polynomial analog of the Bang theorem for the Euclidean ball and an even stronger polynomial version for the complex projective space. Specifically, for the ball, we show that for every real nonzero $$d$$-variate polynomial $$P$$ of degree $$n$$, there exists a point in the unit $$d$$-dimensional ball at distance at least $1/n$ from the zero set of the polynomial $$P$$. Using the polynomial approach, we also prove the strengthening of the Fejes Tóth zone conjecture on covering a sphere by spherical segments, closed parts of the sphere between two parallel hyperplanes. In particular, we show that the sum of angular widths of spherical segments covering the whole sphere is at least $$\pi $$. 
    more » « less
  3. Abstract We prove a complex polynomial plank covering theorem for not necessarily homogeneous polynomials. As the consequence of this result, we extend the complex plank theorem of Ball to the case of planks that are not necessarily centrally symmetric and not necessarily round. We also prove a weaker version of the spherical polynomial plank covering conjecture for planks of different widths. 
    more » « less